Small Comfort and the Big Picture


Let’s look at two events from this week. The first is the reconnection of emissions-free nuclear-generated electricity to the power grid in Kagoshima prefecture. Sendai Unit 1 may be the first reactor to be remembered by the wider public for operating uneventfully as designed (like the vast majority of reactors). And maybe even for its lovely paint job.

Japan has taken its first step back onto the path towards an initial 45% share of non-fossil fuel electricity, something which nuclear opponents have variously dismissed as impossible, or vociferously dreaded.

TianjinAnd the second? An actual full scale tragic disaster in an industrial area of Tianjin, a day before and 850 km away. A logistics warehouse exploded several times, killing dozens and injuring hundreds. From the shocking footage, the scale of the blast puts Hollywood to shame.

This is what hazardous chemicals can do. Survivors have been evacuated and authorities are being extremely cautious, which is proper. Greenpeace themselves have speculated about the materials involved – stuff like sodium cyanide and toluene diisocyanate.

I don’t work with these sorts of industrial chemicals – though not because I’m afraid of them. But it is a fact that they are vital for a myriad of things we all take for granted every day. And last night you probably slept on a mattress which incorporates polyurethane foam – a polymer that requires toluene diisocyanate for its manufacture.

A nuclear reactor like Sendai Unit 1 simply cannot explode in anything like the fashion that warehoused chemicals can. But it supplies an equally vital modern product: on-demand, clean electricity. All of its by-products are in non-polluting solid form and are equally non-explosive.

The uncontained material spread by the explosion in Tianjin is a serious concern, but it is also far more diffuse now, and will be diluted rapidly by rain. Official identification will allow authorities to test for levels which may still be harmful. When the Fukushima Daiichi reactors’ containment was destroyed by hydrogen explosions, the concern was for radionuclide release. Fortunately, the most dangerous isotope, Iodine-131, disappears on its own after around three months. Further, as Professor Geraldine Thomas wrote:

There is no evidence that there are any other health effects from other radioactive isotopes that were released – particularly Caesium. This is because these do not concentrate in particular tissues in the body.

Caesium-137 is the principle agent of hysteria, if we are to listen to Greenpeace and other nuclear opponents who look to be unwilling to ever admit to the stark non-harm from the 2011 accident. It won’t hurt anybody as dispersed atoms. And as we know from Goiânia in 1987, even massive accidental doses from a highly concentrated Caesium-137 source – which will never be encountered in Japan – have not resulted in elevated cancers or any child deformities.

Ideally, informed caution will be maintained in Tianjin, the public is protected, and the global chemical logistics industries can tighten safety, where appropriate, in the aftermath of this tragedy. We might also appreciate that our modern comforts are always associated with potential hazards, but that the true magnitudes can diverge more than some will ever want to admit.